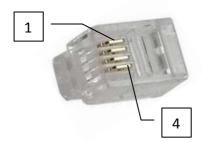
1. Введение.


Настоящий документ описывает протокол обмена дополнительных внешних устройств с системой EctoControl. Протокол основан на основе стандарте Modbus RTU (MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b), http://www.modbus.org.

2. Описание физического и канального уровней

На физическом уровне используется интерфейс RS-485, полудуплексный режим. В качестве канального уровня используется протокол UART, скорость 19200 бит/с, 8 бит данных, 1 стартовый и 1 стоповый бит, без контроля четности.

Для подключения устройств к системе EctoControl или к разветвителю используется четырехжильный кабель. Каждое устройство имеет в своем составе кабель длиной 1...10м, оснащенный соединителем типа 4Р4С (аналогичный устанавливаемому на кабеле трубок проводных телефонных аппаратов). В зависимости от производителя кабеля возможны 2 варианта соответствий цвета жилы сигналу интерфейса:

Номер контакта	Наименование сигнала	Цвет (вариант кабеля №1)	Цвет (вариант кабеля №2)
1	+12V	Желтый	Красный
2	GND	Белый	Белый
3	А	3еленый	3еленый
4	В	Коричневый	Синий

По линиям +12V и GND на устройство поступает питание (7...14В постоянного тока). Линии «А» и «В» представляют собой сигнальные линии интерфейса RS-485. Уровень напряжения при формировании сигнала устройством лежит в диапазоне 0...5В, при формировании сигнала внешним устройством — 0...12В.

3. Описание транспортного уровня.

Для реализации обмена данными с устройствами используются стандартные функции протокола Modbus: Read Holding Registers (0x03)

Write Holding Registers (0x10)

Read input registers (0x04)

Каждое устройство на шине является ведомым, для опроса устройств и управления ими используется единое ведущее устройство (система EctoControl).

Условные обозначения:

RSVD – зарезервировано для последующего использования

R – доступ только на чтение (input registers)

RW – доступ на чтение и запись (holding registers)

Каждое устройство содержит однотипную информационную структуру, содержащую общую информацию об устройстве.

Начальный адрес структуры (регистры): 0x0000, holding registers

Длина структуры (регистры): 4

Адрес байта	0	1	2	3	4	5	6	7
Поле	RSVD		UID		RSVD	ADDR	TYPE	CHN_CNT
Регистр	0		1		2		3	
Доступ	R		R		RW	1		R
Адрес регистра	0x00	000	0x0001		0x0002		0x0003	

ADDR – логический адрес устройства на шине ModBus, по умолчанию 0xF0 (может быть принудительно записан мастером с помощью широковещательного пакета). Имеет диапазон 0x01...0x20.

ТҮРЕ – тип устройства, определяющий его физические свойства:

Измерительные датчики:

0х22 - датчик температуры

0х23 – датчик влажности воздуха

Контактные датчики:

0х50 – универсальный контактный датчик

Устройства управления:

0хС0 – блок управления реле двухканальный

0хС1 – блок управления реле десятиканальный

CHN_CNT – число каналов устройства (1...10).

4. Структура данных измерительных датчиков

Начальный адрес структуры (регистры): 0x0020, input registers

Длина структуры (регистры): CHN CNT (1...10)

Байт	0: MSB	1:LSB	2: MSB	3: LSB		CHN_CNT-2:MSB	CHN_CNT-1:LSB
Поле	CHN 0		CHN 1			CHN 9	
Регистр	0		1			CHN_CNT-1	
Доступ	R		R		R	R	
Адрес	0x0	0020	0x0021		0x0020+0	CHN_CNT-1	

CHN0...CHN9 – данные датчика для каналов 1...10. Данные действительны только для того количества доступных каналов, которое указано в поле CHN CNT информационной структуры.

СНN *N* — данные измерения. Для датчиков температуры (TYPE=0x22) представляет собой знаковое целое шестнадцатиразрядное число, MSB — старший байт, LSB — младший байт. Диапазон возможных значений: - 32768...+32767. Показания температуры указываются как число -400...+990, что соответствует -40...+99 град. С в десятых долях градуса. Например, значение 0x123 будет соответствовать 29,1C (в десятичной системе 0x123 = 291, т.е. 29,1C). Для датчика влажности воздуха (TYPE=0x23) возможные значения будут в диапазоне 0...1000, что отражает показание относительной влажности в десятых долях процента. Например, данные 0x381 будут соответствовать 89,7% (0x381 = 897, т.е. 89,7%).

5. Структура данных контактных датчиков

Начальный адрес структуры (регистры): 0x0010, input registers

Длина структуры (регистры): CHN_CNT (1...10)/8, но не менее 1 регистра.

Байт	0: MSB	1:LSB	2: MSB	3: LSB		CHN_CNT-2:MSB	CHN_CNT-1:LSB
Поле	CHI	N 07	CHN 8	15	•••	•	
Регистр	0		1		•••	CHN_CNT-1	
Доступ	R		R		R	R	
Адрес	0xl	0020	0x00	21		0x0020+0	CHN_CNT-1

Номер регистра соответствует целочисленному делению номера канала на 16:

REG NO = CHN NO/16

Номер байта соответствует целочисленному делению номера канала на 8:

BYTE_NO = CHN_NO/8

Номер бита в каждом байте соответствует номеру канала по остатку от деления на 8:

BIT NO = CHN NO%8

Установленный бит означает тревогу датчика, сброшенный – норму.

6. Устройства управления

Устройства такого рода имеют 2 типа структур: битовые маски каналов и массив таймеров.

Битовая маска каналов:

Начальный адрес структуры (регистры): 0x0010, input registers

Длина структуры (регистры): CHN_CNT (1...10)/8, но не менее 1 регистра.

Байт	0	1	2	3	
Поле	CHN 0-7	CHN 8-15	CHN 16-23	CHN 24-31	
Регистр	0		-		
Доступ	RW		RW		RW
Адрес	0x0010		0x0011		

Номер регистра соответствует целочисленному делению номера канала на 16:

$REG_NO = CHN_NO/16$

Номер байта соответствует целочисленному делению номера канала на 8:

BYTE_NO = CHN_NO/8

Номер бита в каждом байте соответствует номеру канала по остатку от деления на 8:

BIT_NO = CHN_NO%8

Установленный бит означает включенное устройство, сброшенный – отключенное.

Массив таймеров:

Начальный адрес структуры (регистры): 0x0020, holding registers

Длина структуры (регистры): CHN CNT.

Байт	0: MSB	1: LSB	2: MSB	3: LSB	•••
Поле	СН	CHN 0		CHN 1	
Регистр	0		1		
RW access	RW		RW		RW
Адрес	0x0	020	0x0	021	

CHN n — данные времени, в течение которого должно удерживаться заданное состояние устройства (биты 14...0) и начальное состояние устройства (бит 15). Состояние реле применяется только в пакете записи в регистры таймеров, после получения устройством команды значение старшего бита мгновенно применяется к соответствующему выходу и удаляется из регистра, остаток соответствует таймауту, по истечении которого состояние реле будет изменено на противоположное.

Нормальное состояние таймера равно нулю, (таймер считает сверху вниз). Состояние, отличное от нуля, свидетельствует о том, что таймер запущен. Когда значение таймера достигает нуля, выход соответствующего канала инвертируется. Значение соответствующего регистра определяет задержку кратно 500мс. Например, для задержки в 5 секунд необходимо передать значение регистра 0х000A (10 dec). Таким образом в диапазоне 0х0001-0x7FFF возможно формирование интервалов времени от 500мс до 16383.5c (4 часа, 33мин., 3.5c).

6. Функции для программирования устройств в систему

Для задания устройству уникального адреса на шине Modbus используется процедура программирования адреса. Процедура основана на отправке специальной функции PROG READ (0x46) и PROG WRITE (0x47).

Функция PROG_READ (0**x46)** (высылается ведущим устройством единственному устройству на шине с неизвестным адресом).

Запрос от ведущего устройства:

Широковещательный адрес	Код функции	CRC_HI	CRC_LO
0x00	0x46	0xXX	0xXX

Ответ от ведомого устройства:

Адрес ведомого устройства	Код функции	CRC_HI	CRC_LO
ADDR	0x46	0xXX	0xXX

Функция PROG_WRITE (0**x47) (**высылается ведущим устройством ведомому с указанием сменить свой имеющийся адрес на заданный).

Запрос от ведущего устройства:

Широковещательный адрес	Код функции	Новый адрес	CRC_HI	CRC_LO
0x00	0x47	ADDR	0xXX	0xXX

Ответ от ведомого устройства:

SLAVE_ADDR	PDU	Новый адрес	CRC_HI	CRC_LO
ADDR	0x47	ADDR	0xXX	0xXX

Устройство обновляет свой адрес на ADDR и высылает ответ уже с нового адреса.